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Abstract
The excitation gaps for the two-orbital degenerate Hubbard model are
investigated by applying a generalized version of Lieb’s spin-reflection
positivity. Combining the known exact results on the ground state, and making
use of symmetry properties, we rigorously show that, at half-filling, the charge
gaps are always larger than the spin-excitation gaps and properly defined orbital
gaps.

1. Introduction

It is generally recognized that the Hubbard Hamiltonian is the simplest model for describing
strongly interacting many-electron systems. Despite its simplicity, this model is considered
to capture the essential physics of several electronic systems, ranging from a metal–insulator
transition, and associated antiferromagnetism, to possible d-wave superconductivity and so
on [1]. Although most of the real systems displaying these phenomena have orbital degrees of
freedom, most of theoretical works have concentrated on the orbitally non-degenerate model
for simplicity.

Nevertheless, in real materials, such as the transition metal oxides [2], the magneto-
resistive materials [3], the alkali-doped fullerides [4] as well as the spin triplet superconductor
Sr2RuO4 [5], the orbital degeneracy plays an important role and necessarily has to be taken
into account. Therefore, the gaining of some insight into the behaviour of these complex
oxides requires the investigation of the orbitally degenerate Hubbard (ODH) model. In this
description, key interaction parameters are the Hund coupling and the intra-orbital and inter-
orbital Coulomb interactions.

Several theoretical studies have been made up to now on the ODH model, concentrating
mainly on the application of the slave-boson mean field approximation [6], the quantum Monte
Carlo (QMC) method, and dynamical mean field theory (DMFT). Namely, using the QMC
technique, the thermodynamics and spectra for the ODH model in infinite spatial dimensions
have been calculated [7]; then, by using DMFT combined with the non-crossing approximation,
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the one-particle spectral function and the optical conductivity have been computed [8].
Koga et al [9] used the exact diagonalization method to solve the DMFT equations and to
obtain two Mott–Hubbard transitions, the so-called orbital-selective Mott–Hubbard transition.
Liebsch [10] employed QMC simulations and the iterated perturbation theory to solve the
DMFT equations, finding a single first-order Mott–Hubbard transition with similar changes
in both bands. Referring to the limits of these procedures, we would like to point out that the
QMC is more suitable for addressing the Mott–Hubbard transition, allowing us to identify a gap
unambiguously. However, the QMC simulations are restricted to relatively high temperatures
and there is a sign problem when the Hund exchange coupling is fully taken into account
and not only the Ising component is considered. It is finally worth mentioning the results
obtained by employing the most recent advances in the field of QMC simulations for DMFT. In
particular, the projective QMC method [11] enables us to address the study of this model also
at T = 0, and furthermore, a new Hubbard–Stratonovich decoupling [12] allows us to perform
the calculations assuming the full SU(2)-symmetric Hund exchange and, at the same time, to
manage the well-known sign problem.

Apart from these numerical-based works, only a few exact results have been known up to
now: we refer to the SU(4) theory presented for the one-dimensional model case [13] and the
symmetry properties of the ground state when the model is referenced to a bipartite lattice [14].

The aim of this paper is to provide some new exact results on the ODH model, proving
two theorems on the excitation gaps. Indeed, we will derive exact inequalities between the
spin, the charge and a properly defined orbital gap. We would like to note that the proof of
these theorems strictly follows the elegant procedure outlined and successfully applied to a
large variety of strongly correlated electron models proposed in [15]. In particular, in these
papers it has been shown that the charge gaps and the quasi-particle gaps are always larger
than the corresponding spin gaps, when suitable choices of the filling and a connected bipartite
lattice are assumed.

The organization of this paper is as follows. In section 2 we introduce the microscopic
ODH model to which we refer, as well as its symmetry properties, in section 3 we state and
prove two theorems on the excitation gaps, and finally, in the last section, we supply a summary
of the results and concluding remarks.

2. The ODH model and its symmetry properties

The model Hamiltonian to which we refer is built up by different contributions that reproduce
the dynamics of electrons in a manifold spanned by two equivalent orbitals on a connected
bipartite lattice �:

H = Hkin + Hel−el. (1)

The first term in equation (1) is the kinetic operator that defines the hopping between
neighbouring sites on the same orbital:

Hkin = −t
∑

i j,α,σ

(d†
iασ d jασ + h.c.) (2)

where d†
iασ is the creation operator for an electron with spin σ at the i site in the α orbital, and

the hopping amplitude is assumed to be t for both the orbitals.
The second term in H stands for the local Coulomb interactions between electrons in the

same, or in different, orbitals. Since the two orbitals are equivalent, they can be interchanged
by a properly chosen canonical transformation and the wavefunction can be assumed to be
real [16]. These conditions impose a constraint on the set of interaction parameters, leading to
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U = U ′ + J [17], where U (U ′) is the intra(inter)-orbital Coulomb repulsion and J is the Hund
coupling. Thus, Hel−el assumes the following expression:

Hel−el = (U + J )
∑

i,α

niα↑niα↓ + U
∑

i,σ

ni1σ ni2σ̄

+ (U − J )
∑

i,σ

ni1σ ni2σ − J
∑

i,σ

d†
i1σ di1σ̄ d†

i2σ̄ di2σ (3)

where niασ is the on-site charge operator for spin σ and for the α orbital. Moreover, we have
used the simplified notation σ = −σ .

Hereafter, we will use the condition that U and J are positive3.
Let us now discuss the symmetry properties of the ODH Hamiltonian. We introduce the

following operators:

S = 1
2

∑

i,σ,σ ′α
d†

iασ (σ̂ )σσ ′diασ ′ (4)

η = 1
2

∑

i,σ,σ ′α
ε(i)d†

iασ (σ̂ )σσ ′d†
iασ ′ (5)

T = 1
2

∑

i,σ,α,α′
d†

iασ (σ̂ )αα′ diα′σ (6)

where σ̂ are the Pauli matrices and ε(i) = ±1 is a form factor depending to which of the two
subparts of the bipartite lattice � the site i belongs.

The operators defined above are the usual total spin operator, the pairing operator, and the
pseudospin orbital operator, respectively.

We point out that the η operator in equation (5) extends the definition originally introduced
by Yang [19] within the Hubbard model to the case of two equivalent electrons, and it generates
an SU(2) algebra which, on each site, has the doubly occupied state and the empty state as basis
vectors. The T operator exhibits the same properties of the usual spin-half operator, implying
that it generates an SU(2) algebra too. Moreover, T z

i at each site assumes the values 1/2 and
−1/2, corresponding to the occupied α = 1 and α = 2 orbitals, respectively, whereas T +

i (T −
i )

moves an electron sitting at the orbital 2 (1) to the orbital 1 (2), located at the same lattice site.
It is easily checked that H commutes with the total spin operator S, and, since there is no

hopping between different orbitals in Hkin, also with T. Moreover, η2 and its third component
ηz also commute with H , implying that the eigenstates of H can be classified in terms of
the eigenvalues of all these operators. We would like to point out that, although T − and T +
commute with H , implying that the states belonging to the same T -multiplet have the same
energy, this property does not hold for the η+ and η− operators. This circumstance means that
states belonging to the same η-multiplet are not degenerate in energy.

The algebras generated by these operators are not independent, but can be related to
each other by means of an orbital-type transformation W and an extended hole–particle
transformation V [14]. Indeed, the spin operator S is mapped into the T operator by means
of the unitary transformation W:

WSW−1 = T, (7)

while V maps the total spin operator into the orbital pseudospin operator

VSV−1 = η. (8)

For completeness, we observe that the Hamiltonian H under W is transformed as follows:

WH W−1 = H̃W , (9)

3 A detailed description of the interaction parameters can be found in [18].
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where H̃W = H (t, U, J ⇒ −J ), i.e. H̃W is obtained from H , replacing J with −J .
Analogously, we have

VH V−1 = H̃V , (10)

where H̃V = H (t, U ⇒ −U, J ⇒ −J ), meaning that H̃V is obtained from H , replacing
U and J with −U and −J , respectively. Besides, equations (9) and (10) suggest that the
eigenvalues and eigenvectors of H and the unitary-transformed Hamiltonian H̃i (i = V , W )
are linked to each other.

Under the simultaneous application of V and W transformations, the Hamiltonian H
becomes:

(WV)H (WV)−1 = H̃ , (11)

where

H̃ = −t
∑

〈i, j〉ασ

d†
iασ d jασ − (U − J )

∑

i,α

niα↑niα↓

− U
∑

i,σ

ni1σ ni2σ − (U + J )
∑

i,σ

ni1σ ni2σ − J
∑

i,σ

d†
i1σ di1σ d†

i2σ di2σ . (12)

Conversely, applying V and W, H is mapped into Ĥ , given by

Ĥ = −t
∑

〈i, j〉ασ

d†
iασ d jασ − (U − J )

∑

i,α

niα↑niα↓

− U
∑

i,σ

ni1σ ni2σ − (U + J )
∑

i,σ

ni1σ ni2σ − J
∑

i,σ

d†
i1σ di1σ d†

i2σ di2σ ≡ H̃ .

As a final consideration, we want to stress that, when H describes real physical systems, U
is always larger than Hund’s coupling energy and this condition implies that all the interaction
strengths in H̃ and Ĥ are negative (see footnote 3). This consideration is essential, since
it allows for application of the Lieb argument on the spin reflection positivity and hence for
establishing the symmetry properties of the ground-state vector [20].

3. Excitation gaps

In order to prove the theorems claimed in the introduction, let us now introduce the definitions
of the excitation gaps.

The spin-excitation gap is defined as

�S ≡ EG(η = 0, T = 0, S = 1; H ) − EG(η = 0, T = 0, S = 0; H );
the charge excitation gap is given by

�C ≡ EG(η = 1, T = 0, S = 0; H ) − EG(η = 0, T = 0, S = 0; H );
while the orbital gap is defined by

�T ≡ EG(η = 0, T = 1, S = 0; H ) − EG(η = 0, T = 0, S = 0; H ).

Here EG(η = j, T = t, S = s; H ) is the lowest eigenvalue of the corresponding Hamiltonian
H in the subspace with quantum numbers η = j , T = t and S = s.

Now we have all the ingredients to state the following theorems:

Theorem 1. For the Hamiltonian H introduced in equation (1) at half-filling, the charge gap
and the corresponding spin gap satisfy the following inequality:

�C � �S. (13)
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Theorem 2. For the Hamiltonian H introduced in equation (1) at half-filling, the charge gap
and the corresponding orbital gap satisfy the following inequality

�C � �T . (14)

In order to prove these theorems, we will make use of the following inequality:

EG(N; H ) � EG(N; H̃ ), (15)

where EG(N; H ) and EG(N; H̃ ) are the ground-state energies for the Hamiltonian H and
H̃ , respectively, at a specified even number of electrons with the condition N � 4N0, with
N0 denoting the number of lattice sites. We want to stress that the inequality equation (15)
can be easily proven using the method adopted by Tian [15], noticing that, under the unitary
transformation WV, the Fock space F(N) of H is mapped into the new Fock space F(2N0) of
H̃ .

Now, let us start with an even number of particles N = 2N0 + 2. Applying the above-
reported inequality equation (15), we have:

EG(2N0 + 2; H ) � EG(2N0 + 2; H̃).

We notice that the state whose energy is EG(2N0 + 2; H̃) has the following quantum numbers,
S = 0, T = 0 and η = 1, for the spin, the pseudospin orbital and pseudospin operator,
respectively.

Since the unitary transformation WV maps the spin operator S into η operator, we also
have

EG(2N0 + 2; H̃) = EG(2N0 + 2; S = 0, T = 0, η = 1; H̃)

= EG(2N0; S = 1, T = 0, η = 0; H ),

where the quantum numbers of the ground state have been written explicitly. Therefore, we can
write

EG(2N0 + 2; H ) � EG(2N0; S = 1, T = 0, η = 0; H ).

On the other hand, we known from the definition of EG(2N0 + 2; H ) and pseudospin operator
η that

EG(2N0; S = 0, T = 0, η = 1; H ) � EG(2N0 + 2; H ),

implying that, if EG(2N0; S = 0, T = 0, η = 0; H ) is subtracted from the above reported
inequalities, we deduce

EG(2N0; S = 0, T = 0, η = 1; H ) − EG(2N0; S = 0, T = 0, η = 0; H )

� EG(2N0; S = 1, T = 0, η = 0; H ) − EG(2N0; S = 0, T = 0, η = 0; H )

(16)

which corresponds to the proof of equation (13), i.e. to theorem 1.
Now, let us consider theorem 2. To this end, we notice that, under the transformation VW,

the Hamiltonian in equation (1) is transformed into Ĥ , inequality equation (15) holds, and thus
we can apply a proof similar to the one adopted to prove theorem 1. Indeed, let us start by
choosing a special filling N = 2N0 + 2 and, considering equation (15), we get

EG(2N0 + 2; H ) � EG(2N0 + 2; H̃).

We know that the quantum numbers of the eigenstate corresponding to the energy EG(2N0 +
2; H̃) are S = 0, T = 0 and η = 1. Since the unitary transformation VW maps the operator T
into η operator, we can write

EG(2N0 + 2; H̃) = EG(2N0 + 2; S = 0, T = 0, η = 1; H̃)

= EG(2N0; S = 0, T = 1, η = 0; H ).
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Therefore, we get

EG(2N0 + 2; H ) � EG(2N0; S = 0, T = 1, η = 0; H ).

On the other hand, it is well known that

EG(2N0; S = 0, T = 0, η = 1; H ) � EG(2N0 + 2; H ),

so that, by subtracting the quantity EG(2N0; S = 0, T = 0, η = 0; H ) from both sides of the
above inequality, we finally get the following relationship:

EG(2N0; S = 0, T = 0, η = 1; H ) − EG(2N0; S = 0, T = 0, η = 0; H )

� EG(2N0; S = 0, T = 1, η = 0; H ) − EG(2N0; S = 0, T = 0, η = 0; H ),

(17)

which successfully concludes the proof of theorem 2.

4. Conclusions

By exploiting the partial particle–hole symmetry of the ODH model at half-filling and applying
a generalized version of Lieb’s spin-reflection positivity method, we have established some
exact inequalities between the ground-state energies of this relevant strongly correlated electron
model. The method that is applied follows a previously adopted procedure introduced by
Tian [15] to prove analogous inequalities for relevant strongly correlated electron models
such as the Hubbard model, the periodic Anderson model and the Kondo model. As a direct
corollary of the derived inequalities, we have proven that the charge gap of the model is always
larger than the spin-excitation gap. Moreover, introducing the orbital charge gap as the energy
difference between ground-state energies which differ by one in the orbital quantum number T ,
we have also shown that the charge gap is higher than the orbital gap. We want to stress that the
following conditions have to be fulfilled for the validity of the results obtained above: (i) the
number of electrons is equal to twice the number of sites in the lattice (half-filling condition);
(ii) the numbers of lattice sites belonging to the two sublattices forming the bipartite lattice �

are equal; (iii) the hopping amplitude is different from zero only for the charge transfer between
orbitals of the same type.

We notice that, as far as the Anderson model is concerned, the inequality equation (13)
between the charge gap and the spin gap was observed firstly in numerical calculations
performed on small-size clusters [21]. Therefore, it would be worth studying the present ODH
model on clusters. However, to overcome problems related to finite size effects which make
the charge gap strongly parity dependent, it is necessary to redefine this quantity. This has been
done by Nishino [22], who showed that one can introduce a new charge gap that is indeed much
less parity dependent than the usual charge gap. Subsequently, Tian and Wang [23] proved
rigorously that the Nishino gap is always positive and a lower bound exists for this quantity
when the half-filled Hubbard model, the periodic Anderson model and the Kondo lattice model
are considered. In this respect, we plan the study of the ODH model on finite-size clusters in
the near future, with the aim of linking the numerical solutions to the exact results.

As a final remark, we would like to note that some exact non-trivial results are known
on generalized one-band Hubbard models [24], but no extensions of these results are available
for the multi-orbital Hubbard model. Investigation into the direction of determining, within
the method outlined in [24], the exact ground-state wavefunction and energy of ODH in some
physically relevant parameter regime is in progress.
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